

Normalizing Flows for Real-Time Unsupervised Anomaly Detection

Denis Gudovskiy Panasonic Al Lab, Mountain View, CA Email: <u>denis.gudovskiy@us.panasonic.com</u>

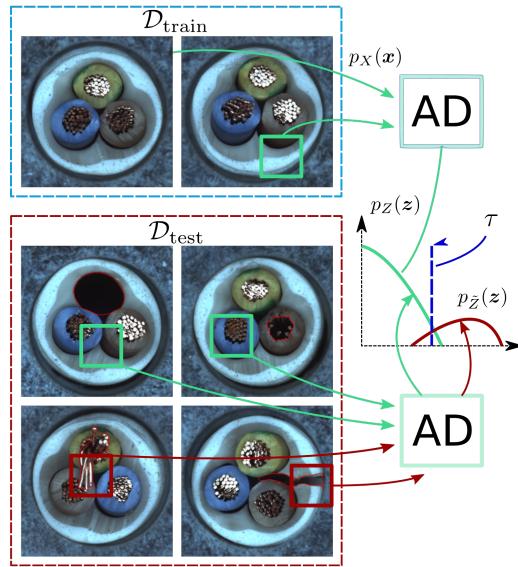
Background: Panasonic Business

Deployments outside of a geo-fenced areas are not scalable without robust perception

https://news.panasonic.com/global/press/data/2020/12/en201214-1/en201214-1.html https://www.youtube.com/watch?v=G4BnC4NZ7vE

Motivation: Unsupervised Anomaly Detection as OOD

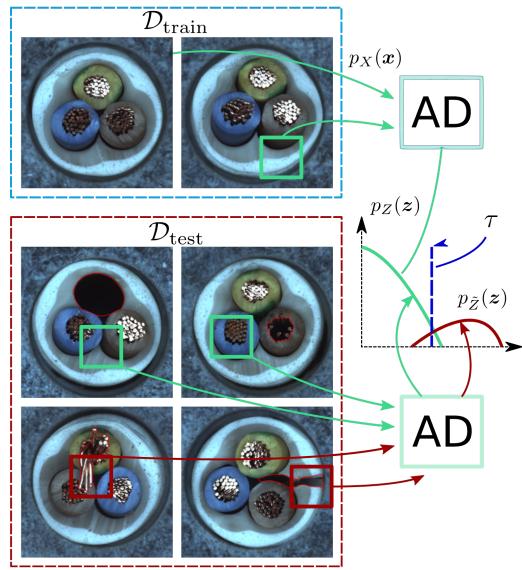
 Anomaly detection (AD) can be used in many practical applications: robust AV perception systems, industrial inspection, road traffic monitoring, medical diagnostics and many others



Motivation: Unsupervised Anomaly Detection as OOD

 Anomaly detection (AD) can be used in many practical applications: robust AV perception systems, industrial inspection, road traffic monitoring, medical diagnostics and many others

 However, the supervised AD requires costly annotations and, in some cases, is not applicable



Motivation: Unsupervised Anomaly Detection as OOD

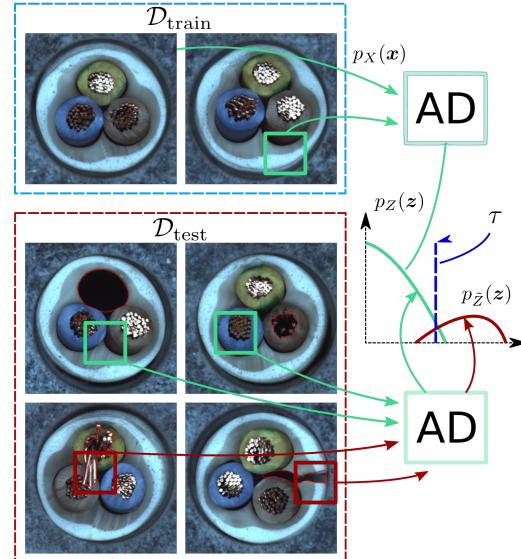
 Anomaly detection (AD) can be used in many practical applications: robust AV perception systems, industrial inspection, road traffic monitoring, medical diagnostics and many others

 However, the supervised AD requires costly annotations and, in some cases, is not applicable

 A more appealing approach is to collect only unlabeled anomaly-free images for a train dataset

 Then, any deviation from distribution of anomalyfree images can be classified as an anomaly

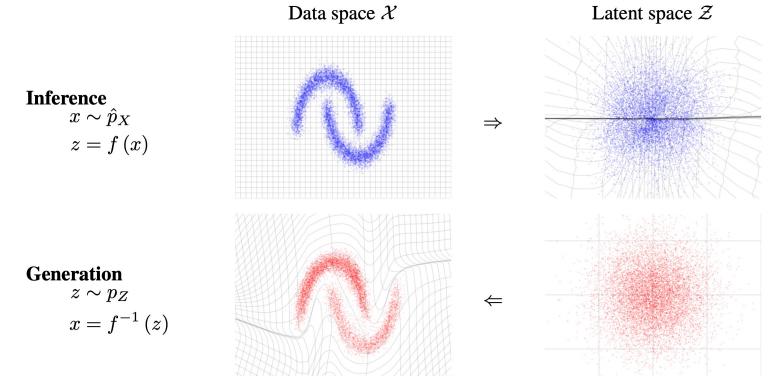
 Hence, the AD task can be reformulated as a task of out-of-distribution detection (OOD) with the objective to estimate data likelihoods



Solution: Normalizing Flows for OOD

References:

• Unlike others, normalizing flows can estimate the exact data likelihoods $\hat{p}_X(x, \theta) \cong p_X(x)$ • A set of invertible layers convert an arbitrary density $p_X(x)$ to a base distribution $p_Z(z)$ • Then, the $\log \hat{p}_X(x, \theta) = \log p_Z(z) + \sum_l \log |\det J_l|$, where a sample $z \sim N(0, I)$ and a Jacobian determinants can be efficiently computed for certain layer architectures¹



[1] Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio. Density estimation using Real NVP. In ICLR, 2017

Our Work: Conditional Normalizing Flows for OOD

In our recent CFLOW-AD paper¹, we propose to extend conventional flow models by incorporating a conditional vector *c* to encode spatial information into the model:
We are interested in anomaly segmentation task for perception systems
Our conditional vector contains sin/cos harmonics from a positional encoding²
It is concatenated with the intermediate outputs inside each flow's coupling layer
We efficiently share flow parameters *θ* between feature map's spatial dimensions

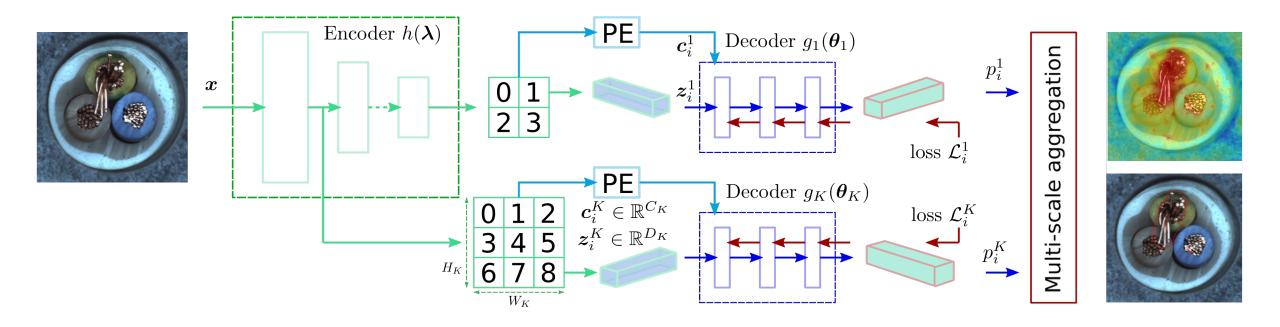
 \circ Finally, we train our conditional flow model $\hat{p}(x, c, \theta)$ for AD (CFLOW-AD) using conventional maximum likelihood objective as:

$$L(\boldsymbol{\theta}) = D_{KL}[p_X(\boldsymbol{x}) \parallel \hat{p}_X(\boldsymbol{x}, \boldsymbol{c}, \boldsymbol{\theta})] \approx \frac{1}{N} \sum_{i=1}^{N} [\|\boldsymbol{z}_i\|_2^2 / 2 - \log|\det \boldsymbol{J}_i|] + \text{const}$$

References:

Denis Gudovskiy et al. <u>CFLOW-AD: Real-Time Unsupervised AD with Localization via Conditional Flows</u>. In WACV, 2022
Ashish Vaswani et al. <u>Attention Is All You Need</u>. In Advances in Neural Information Processing Systems, 2017

Our Work: CFLOW-AD Architecture



Encoder is a conventional CNN/transformer feature extractor pretrained on natural images
Multi-scale pyramid pooling extracts local and global features in the latent space
Decoders are the flow models with the positional encoding (PE) conditional inputs
We estimate a final anomaly score map by aggregating multi-scale likelihoods

Experiments: MVTec and STC

O MVTec and STC are the datasets with factory defects and surveillance camera videos

\odot AUROC and AUPRO are popular threshold-agnostic metrics for AD

Table 1: Average AUROC and AUPRO on the MVTec dataset, %. Both the best detection and localization metrics are presented, if available. CFLOW-AD is with WideResNet-50 encoder.

Metric	AUROC		AUPRO	
Model	Detection	Loca	lization	
SVDD [5]	92.1	95.7	- 91.7 -	
SPADE [1]	85.5	96.0		
CutPaste [3]	97.1	96.0		
PaDiM [2]	97.9	97.5	92.1	
CFLOW-AD (ours)	98.26	98.62	94.60	

Table 2: Average AUROC on the STC dataset, %. Both the best available detection and localization metrics are showed. CFLOW-AD is with WideResNet-50 encoder.

Metric	AUROC			
Model	Detection	Localization		
CAVGA [4]	_	85.0		
SPADE [1]	71.9	89.9		
PaDiM [2]	-	91.2		
CFLOW-AD (ours)	72.63	94.48		

References

- [1] Niv Cohen and Yedid Hoshen. Sub-image anomaly detection with deep pyramid correspondences. arXiv:2005.02357v3, 2021.
- [2] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. PaDiM: a patch distribution modeling framework for anomaly detection and localization. In *ICPR Workshops*, 2021.
- [3] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. CutPaste: Self-supervised learning for anomaly detection and localization. In *CVPR*, 2021.
- [4] Shashanka Venkataramanan, Kuan-Chuan Peng, Rajat Vikram Singh, and Abhijit Mahalanobis. Attention guided anomaly localization in images. In *ECCV*, 2020.
- [5] Jihun Yi and Sungroh Yoon. Patch SVDD: Patch-level SVDD for anomaly detection and segmentation. In ACCV, 2020.

CFLOW-AD is a Real-Time Model

\odot Previous methods have high complexity:

- \checkmark Pretrained encoder is fully-convolutional and fast
- Post-processing is slow due to high memory consumption

○ CFLOW-AD has significantly lower complexity:

- \checkmark Encoder and decoders are fully-convolutional
- \checkmark Memory requirements are a factor of 10× lower
- ✓ Hence, inference speed is much higher on a GPU
- ✓ Lightweight MobileNetV3L encoder has a minor drop in performance compared to WideResNet-50

\odot CFLOW-AD is suitable for AD on edge devices:

- ✓ Less than 25MB model for MobileNetV3L
- ✓ Inference speed is ~35 fps on 1080 GPU

Table 6. Complexity comparison in terms of inference speed (fps) and model size (MB). Inference speed for CFLOW-AD models from Table 3 is measured for $(256 \times 256) / (512 \times 512)$ inputs.

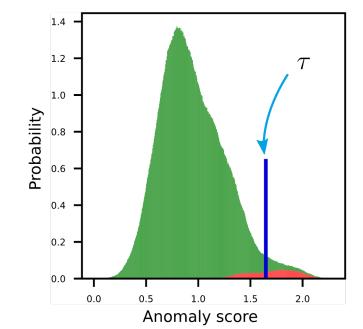
Complexity metric and Model	Inference speed, fps	Model s STC	size, MB MVTec		
R18 encoder only	80 / 62	45			
PaDiM-R18 [2]	4.4	210	170		
CFLOW-AD-R18	34 / 12	96			
WR50 encoder only	62 / 30	268			
SPADE-WR50 [1]	0.1	37,000	1,400		
PaDiM-WR50 [2]	1.1	5,200	3,800		
CFLOW-AD-WR50	27 / 9	947			
MNetV3 encoder only	82 / 61	12			
CFLOW-AD-MNetV3	35 / 12	25			

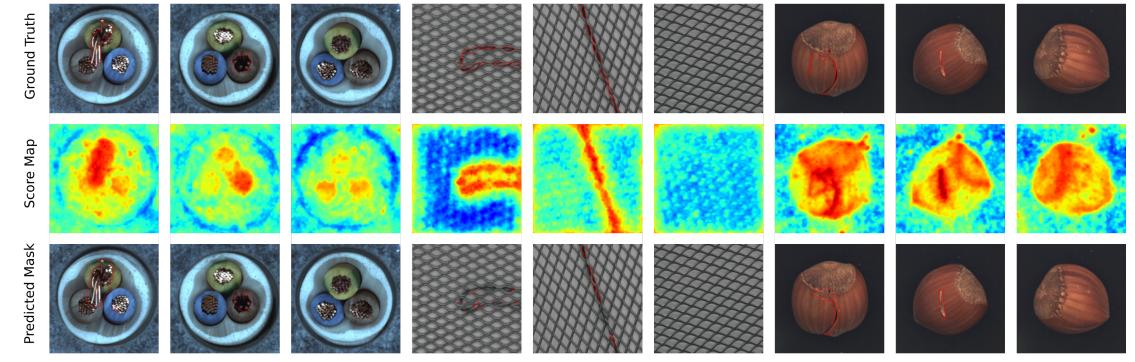
References

- [1] Niv Cohen and Yedid Hoshen. Sub-image anomaly detection with deep pyramid correspondences. *arXiv:2005.02357v3*, 2021.
- [2] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. PaDiM: a patch distribution modeling framework for anomaly detection and localization. In *ICPR Workshops*, 2021.

CFLOW-AD Qualitative Results

Anomaly score distribution (right) proves successful OOD
Ground truth masks (below) are from the MVTec test dataset
Score maps are the aggregated CFLOW-AD anomaly scores
Predicted masks are selected using the F₁-maximized threshold
Positives and negatives are successfully detected by CFLOW-AD





Conclusions

code to reproduce experiments: github.com/gudovskiy/cflow-ad

- ✓ Normalizing flow models work well for unsupervised AD
- ✓ Small tweaks such as in CFLOW-AD allow real-time processing while being SOTA
- ✓ Within a year, the MVTEC-AD leaderboard is switched to FLOW-based models

Rank	Model	Detection AUROC	Segmentation ⁺ Overall AUROC AUC	Extra Training Data	Paper	Code	Result	Year	Tags 🖻
1	CFLOW-AD	98.26	98.62	\checkmark	CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows	0	Ð	2021	
2	Fastflow	99.4	98.5	\checkmark	FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows	0	Ð	2021	Transformer ResNet

Thank you for Attention! Questions?

Panasonic Al