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Background: Panasonic Business

Deployments outside of a geo-fenced areas are not scalable without robust perception
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https://news.panasonic.com/global/press/data/2020/12/en201214-1/en201214-1.html
https://www.youtube.com/watch?v=G4BnC4NZ7VvE
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Motivation: Unsupervised Anomaly Detection as OOD

o Anomaly detection (AD) can be used in many
practical applications: robust AV perception systems,
industrial inspection, road traffic monitoring, medical
diagnostics and many others
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Motivation: Unsupervised Anomaly Detection as OOD

o Anomaly detection (AD) can be used in many
practical applications: robust AV perception systems,
industrial inspection, road traffic monitoring, medical
diagnostics and many others

o However, the supervised AD requires costly
annotations and, in some cases, is not applicable

o A more appealing approach is to collect only
unlabeled anomaly-free images for a train dataset

o Then, any deviation from distribution of anomaly-
free images can be classified as an anomaly

o Hence, the AD task can be reformulated as a task
of out-of-distribution detection (OOD) with the
objective to estimate data likelihoods




Solution: Normalizing Flows for OOD

o Unlike others, normalizing flows can estimate the exact data likelihoods py(x, ) = px(x)
o A set of invertible layers convert an arbitrary density px(x) to a base distribution p,(2)

o Then, the log px(x,0) = logp,(z) + X;log|det J;|, where a sample z ~ N(0,I) and a
Jacobian determinants can be efficiently computed for certain layer architectures?
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Our Work: Conditional Normalizing Flows for OOD

o In our recent CFLOW-AD paper?!, we propose to extend conventional flow models by
incorporating a conditional vector ¢ to encode spatial information into the model:

o We are interested in anomaly segmentation task for perception systems

o Our conditional vector contains sin/cos harmonics from a positional encoding?

o It is concatenated with the intermediate outputs inside each flow’s coupling layer
o We efficiently share flow parameters @ between feature map’s spatial dimensions

o Finally, we train our conditional flow model p(x, c, ) for AD (CFLOW-AD) using
conventional maximum likelihood objective as:
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Our Work: CFLOW-AD Architecture
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o Encoder is a conventional CNN/transformer feature extractor pretrained on natural images
o Multi-scale pyramid pooling extracts local and global features in the latent space
o Decoders are the flow models with the positional encoding (PE) conditional inputs

o We estimate a final anomaly score map by aggregating multi-scale likelihoods



Experiments: MVTec and STC

o MVTec and STC are the datasets with factory defects and surveillance camera videos

o AUROC and AUPRO are popular threshold-agnostic metrics for AD

Table 1: Average AUROC and AUPRO on the MVTec
dataset, %. Both the best detection and localization met-
rics are presented, if available. CFLOW-AD is with
WideResNet-50 encoder.

Metric | AUROC | AUPRO
Model | Detection | Localization
SVDD [5] 92.1 95.7 -
SPADE [1] 85.5 96.0 91.7
CutPaste [3] 97.1 96.0 -
PaDiM [2] 97.9 97.5 92.1
CFLOW-AD (ours) | 98.26 | 98.62 | 94.60
References
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Table 2: Average AUROC on the STC dataset, %. Both
the best available detection and localization metrics are
showed. CFLOW-AD is with WideResNet-50 encoder.

Metric | AUROC
Model | Detection ‘ Localization
CAVGA [4] - 85.0
SPADE [1] 71.9 89.9
PaDiM [2] - 91.2
CFLOW-AD (ours) | 72.63 |  94.48

Niv Cohen and Yedid Hoshen. Sub-image anomaly detection with deep pyramid correspondences. arXiv:2005.02357v3, 2021.
Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. PaDiM: a patch distribution modeling framework for

anomaly detection and localization. In ICPR Workshops, 2021.

Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. CutPaste: Self-supervised learning for anomaly detection and local-

ization. In CVPR, 2021.

Shashanka Venkataramanan, Kuan-Chuan Peng, Rajat Vikram Singh, and Abhijit Mahalanobis. Attention guided anomaly localization

in images. In ECCV, 2020.

Jihun Yi and Sungroh Yoon. Patch SVDD: Patch-level SVDD for anomaly detection and segmentation. In ACCV, 2020.


https://openaccess.thecvf.com/content_CVPR_2019/papers/Bergmann_MVTec_AD_--_A_Comprehensive_Real-World_Dataset_for_Unsupervised_Anomaly_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Luo_A_Revisit_of_ICCV_2017_paper.pdf

Table 6. Complexity comparison in terms of inference speed (fps)

CFLOW_ AD is 3 Re aI_Time Model and model size (MB). Inference speed for CFLOW-AD models
from Table 3 is measured for (256 x256) / (512x512) inputs.
Complexity metric Inference | Model size, MB
and Model speed, fps | STC  MVTec
o Previous methods have high complexity: R18 encoder only 20/ 62 15
v’ Pretrained encoder is fully-convolutional and fast PaDiM-R18 [2] 4.4 210 170
** Post-processing is slow due to high memory CFLOW-AD-RI3 34712 96
consumption WR50 encoder only 62 /30 268
. g . SPADE-WRS50 [1] 0.1 37,000 1,400
o CFLOW-AD has significantly lower complexity: PaDIM-WR50 [2] 1 5200 3.800
v Encoder and decoders are fully-convolutional CFLOW-AD-WR50 27/9 947
v’ Memory requirements are a factor of 10x lower MNetV3 encoder only | 82/61 12
v’ Hence, inference speed is much higher on a GPU CFLOW-AD-MNetV3 | 35/12 25
v’ Lightweight MobileNetV3L encoder has a minor
drop in performance compared to WideResNet-50 References
o CFLOW-AD is SUitable for AD on edge dEViCES! [1] Niv Cohen and Yedid Hoshen. Sub-image anomaly detection
v Less than 25MB model for MobileNetV3L with deep pyramid correspondences. arXiv:2005.02357v3,
2021.

v Inference speed is ~35 fps on 1080 GPU [2] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and

Romaric Audigier. PaDiM: a patch distribution modeling

framework for anomaly detection and localization. In /CPR
Workshops, 2021.



CFLOW-AD Qualitative Results

o Anomaly score distribution (right) proves successful OOD

o Ground truth masks (below) are from the MVTec test dataset
o Score maps are the aggregated CFLOW-AD anomaly scores

o Predicted masks are selected using the F;-maximized threshold

o Positives and negatives are successfully detected by CFLOW-AD
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code to reproduce experiments:

nclusion
Conclusions github.com/gudovskiy/cflow-ad

v" Normalizing flow models work well for unsupervised AD
v" Small tweaks such as in CFLOW-AD allow real-time processing while being SOTA
v' Within a year, the MVTEC-AD leaderboard is switched to FLOW-based models
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Detection Segmentation4 Overall

Rank Model Training Paper Code Result Year Tags [
AUROC AUROC AUC Dat
ata

CFLOW-AD: Real-Time Unsupervised
1 CFLOW-AD 98.26 98.62 v Anomaly Detection with Localization (@) 2] 2021

via Conditional Normalizing Flows

FastFlow: Unsupervised Anomaly
2

Fastflow 994 98.5 Vv Detection and Localization via 2D () ) 2021

Normalizing Flows



https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad
https://github.com/gudovskiy/cflow-ad
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