

Embedded Computer Vision for Autonomous Systems

Denis Gudovskiy Panasonic Al Lab Mountain View, CA

denis.gudovskiy@us.panasonic.com

Panasonic Business Introduction

Li-ion Battery

Next Gen. Cockpit System

Robots

Autonomous Commuter Project

Platform to check our OEM solutions for car manufacturers:

- IVI (In-Vehicle Infotainment) and cockpit
- Car electrification and batteries
- **o** Perception, planning and control

Computer Vision for Autonomous Systems

Task: DNN-based object detection and tracking for 360° perception
 Target: decrease embedded hardware cost and power consumption

Embedded Object Detection

- Efficient detector DNN models
 - Single-stage or two-stage detector, off-the-shelf or NAS backbone
- $\,\circ\,$ Hardware-friendly quantization
 - Common schemes: integer, binary and ternary
- \circ Off-chip memory traffic
 - Bottleneck for speed and power consumption
- DSP/FPGA/ASIC chips
 - Spec-dependent: power, latency, cost, programmability etc.

Efficient Quantization: ShiftCNN (arXiv:1706.02393)

Tradeoff: uniform integers and binary/ternary(a,b) quantization
 Nonuniform log₂ quantization for embedded hardware (c)
 ShiftCNN: sum of N log₂ values each of B-bits (d)
 "No retraining" mode to support existing models

o "No-retraining" mode to support existing models

Efficient Quantization: ShiftCNN (arXiv:1706.02393)

Weight prior has Gaussian distribution due to L₂ regularization
 Distribution of weights and batch normalization scales (a)
 Most of the DNNs work well when N=2 and B=4 (b,c)
 Why Shift CNN: ALL performs only inexpensive shifts and adds

 \odot Why ShiftCNN: ALU performs only inexpensive shifts and adds

Efficient Quantization: ShiftCNN (arXiv:1706.02393)

Image classification results and power simulations for Xilinx FPGA

Table: 1. ImageNet accuracy of baseline models and corresponding ShiftCNN variants.

Network	Shifts <i>N</i>	Bit- width <i>B</i>	Top-1 Accuracy, %
SqueezeNet	base	32	58.4
SqueezeNet	1	4	23.01
SqueezeNet	2	4	57.39
SqueezeNet	3	4	58.39
GoogleNet	base	32	68.93
GoogleNet	1	4	57.67
GoogleNet	2	4	68.54
GoogleNet	3	4	68.88
ResNet-18	base	32	64.78
ResNet-18	1	4	24.61
ResNet-18	2	4	64.24(61.57)
ResNet-18	3	4	64.75(64.69)

Table: 2. FPGA utilization and power consumption estimates

ALU	LUTs	FFs	DSPs	Power, mW
Add. only	1644	1820	0	76
ShiftCNN	4016	2219	0	102
Mult. DSP	0	2048	191	423
Mult. LUT	10064	4924	0	391

ShiftCNN experiments:

- No accuracy decrease without retraining
- \circ N=2, B=4 config works well for classification
- **4× power reduction** for FPGAs

DNN Memory Compression (arXiv:1808.05285)

Motivation: DRAM memory access is 100× more power-hungry than on-chip
 Conventional methods: layer fusion, bottleneck layers, quantization, sparsification
 Our idea: project integers into binary vector space and compress binary vectors
 Outcome: keep on-chip only dense compressed feature maps

DNN Memory Compression (arXiv:1808.05285)

Compression requires DNN finetuning

Problem: quantization is not differentiable operation

○ Solution: straight-through estimator, identity initialization etc.

 \circ Recent research: better solutions exist!

DNN Memory Compression (arXiv:1808.05285)

- \odot SSD512 detector with SqueezeNet backbone
- 512×512x3 = 768 KB input image
- \odot Experiments on Pascal VOC2007 dataset
- \odot We compress 1st two layers with the highest memory consumption

o Factor of 2× compression can be achieved!

Base, fp32	F, fp 32	F+Q, uint8	F+Q, uint4	F+Q+C, uint8
768	768	768	768	768
16384	0	0	0	0
4096	0	0	0	0
2048	2048	512	256	128
16384	0	0	0	0
38912	2048	512	256	128
68.12	68.12	68.08	65.92	64.39
-	$19 \times$	76 imes	$152\times$	$304 \times$
	Base, fp32 768 16384 4096 2048 16384 38912 68.12 -	Base, fp32F, fp32768768163840409602048204816384038912204868.1268.12-19×	Base, fp32 $F, fp32$ $F+Q, uint8$ 768768768163840040960020482048512163840038912204851268.1268.1268.08-19×76×	Base, fp32F, fp32F+Q, uint8F+Q, uint4768768768768163840004096000204820485122561638400038912204851225668.1268.1268.0865.92-19×76×152×

Model	W size, MB	A size, KB	mAP, $\%$			
fp32	23.7	2048	68.12			
Quantized						
uint8	23.7	512	68.08(68.04)			
uint6	23.7	384	67.66(67.14)			
uint4	23.7	256	65.92(44.13)			
uint2	23.7	128	55.86(0.0)			
Proposed $b() \rightarrow 1 \times 1 \rightarrow 1 \times 1 \rightarrow b^{-1}()$						
uint6	23.9	384	68.17			
uint4	23.8	256	65.42			
Proposed: $b() \rightarrow 3 \times 3/2 \rightarrow 3 \times 3^* 2 \rightarrow b^{-1}()$						
uint8	26.5	128	63.53			
uint6	25.9	96	62.22			
Proposed: $b() \rightarrow 2 \times 2/2 \rightarrow 2 \times 2^*2 \rightarrow b^{-1}()$						
uint8	24.9	128	64.39			
uint6	24.6	96	62.09			

FPGA Object Detector

Specs:

- \circ Device: ZCU102
- \circ Speed: 30 fps
- \circ Power: 14W
- Accuracy: 71% mAP (Pascal VOC2007)

Are We Done?

- $\,\circ\,$ We got power-efficient and fast object detector
 - How to make it 100% accurate?
 - Tune model knobs to improve accuracy
 - But, usually, it is not about the model!
- \circ Dataset selection
 - Critical to achieve target accuracy
- Debugging tools
 - Analyze detector predictions for customers and yourself
- $\circ~$ More dataset selection and debugging
 - Machine learning is about the data

• DNNs are *black boxes* due to complex nonlinear models

 \odot Customers of DNN models would like to understand output predictions

{class, x_1, y_1, x_2, y_2 }

○ Challenges:

- ✓ Can we explain DNN predictions for our customers?
- ✓ Can we estimate explanation at reasonable time?
- ✓ Can we improve predictions using explanation?

• Explanation models are able to address these questions

• What is explanation:

- ✓ In computer vision, explanation is a spatial feature importance map
- ✓ Importance values attribute the output effect to the input feature
- ✓ Important values can be either **positive** or **negative** or neutral
- ✓ Explanations can identify missing features in the training dataset!

○ Explain to Fix (E2X) is an *explanation method* combined into *software framework*:
 ✓ High-fidelity explanations comparable to state-of-the-art
 ✓ 10× higher computational efficiency with the similar quality
 ✓ Can be used to process large datasets on a GPU cluster

• E2X is a *local backpropagation-based attribution* method:

 \checkmark All *M* feature importance values are estimates simultaneously

$$\phi = s_x \left(\frac{x}{K} \sum_{k=1}^{K} \frac{\partial f\{u_x(k)\}}{\partial u_x(k)} \right)$$

✓ *K* is the number of samples (forward and backward passes) ✓ Path function $u_x(k)_i = w_i(k)h_x(x)_i$ ✓ Weights $w_i(k) \sim U\{0,1\}$

• We apply E2X to **SSD300** object detector and calculate correlation $E[\rho]$ to reference model • Correlation to state-of-the-art vs. computational speed

We apply E2X to SSD300 object detector and analyze detections
 False negatives can be explained using E2X framework

 \odot False negative \boldsymbol{bus} here is occluded by a car that decreases detector confidence

The most important features for a horse: head, legs and a tail
Rider may decrease confidence if not present in the training dataset
DNN is confused by a rider's left foot: model thinks it is horse tail!

Conclusions

- $\,\circ\,$ Hardware-efficient DNN quantization for embedded chips
 - ✓ 4× power reduction using ShiftCNN
- $\,\circ\,$ Feature map compression for on-chip processing
 - \checkmark 2× memory drop in addition to prior methods
- $\circ~$ Implementation of FPGA-based object detector
 - ✓ Better than GPU power efficiency with low latency
- $\circ~$ Explainability tools for DNN detectors
 - ✓ Make your model transparent and accurate

Questions?

