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Home Action Genome Data Example

Home Action Genome (HOMAGE) [CVPR2021]:
A large-scale multi-view video database of indoor daily activities

https://homeactiongenome.org/
This is a collaboration work with Stanford Vision and Learning Lab

https://homeactiongenome.org/


Home Action Genome Data Example

HOMAGE is a guest task of ActivityNet Challenge at CVPR2021 workshop

http://activity-net.org/challenges/2021/

HOMAGE encompasses the indoor actions and multimodal data
70 
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HOMAGE workshop has been accepted to ICCV2021: http://campworkshop.org

http://activity-net.org/challenges/2021/
http://activity-net.org/challenges/2021/
http://campworkshop.org/


Home Action Genome Data Example

Few-shot learning

Multimodal Cooperative Compositional
Action Understanding (CCAU)



Hic Sunt Dracones et AI - Here be Dragons and AI

The explored world – train data 
Scary dragons live in the test data



Hic Sunt Dracones et AI - Here be Dragons and AI

AI models minimize risk for the empirical train datasets…
and empirical datasets are always limited, biased and noisy…



Hic Sunt Dracones et AI - Here be Dragons and AI

…but it is our job to make them better and, hence, our models more robust.
Therefore, I encourage researchers to go beyond standard dataset setups!



o Scaling AI applications to new domains is tough:
o Labeling is noisy and expensive

o Sometimes, labeling is not even possible

o Models are not robust to unseen/rare test data

o Safety-critical apps are the most vulnerable and leads to geo-fencing, remote operators etc.

Zoo of Relevant Methods and Industrial Applications

o ML research community tries to catch up with:
o Un/self/semi-supervised learning/pretraining
o Active and zero/few-shot learning-assisted labeling
o Augmentation methods optimize labeled datasets
o Domain adaptation: train-time and test-time
o Generative modeling: syn2real, image-to-image translation etc.

o However, such methods usually are limited to:
o Simple tasks: classification vs. 2D/3D object detection/tracking/segmentation, scene parsing
o Simple data domains: sparse unimodal vs. dense multimodal
o Standard public datasets: balanced train/test vs. biased data with label noise



Deep Active Learning for Biased Datasets
via Fisher Kernel Self-Supervision

Denis Gudovskiy1 Alec Hodgkinson1 Takuya Yamaguchi2 Sotaro Tsukizawa2

1Panasonic AI Lab, Mountain View, CA
2Panasonic AI Solutions Center, Osaka

Code: github.com/gudovskiy/al-fk-self-supervision
Email: denis.gudovskiy@us.panasonic.com

Panasonic AI

https://github.com/gudovskiy/al-fk-self-supervision
mailto:denis.gudovskiy@us.panasonic.com


oDNNs require large annotated train datasets

oAnnotation process is costly and do not guarantee accuracy improvement

oChallenges:

❖ How to select train examples for annotation?

❖ How to increase accuracy while minimizing annotation costs? 

❖ How to utilize all unlabeled data?

Motivation 



oActive learning (AL) aims to select only relevant train examples for annotation

oHow active learning works:

✓A representation 𝒛 is pooled from the task model

✓AL acquisition function ℛ(𝒛) is calculated

✓A 𝑏th batch ℕ𝑏 of examples is selected for annotation using ℛ(𝒛)

✓Steps are repeated upon reaching target accuracy

Active Learning



oPrior methods assume: 𝑄𝒙
test = 𝑄𝒙 and only train data is accessed

o Then, a trained classifier misses on underrepresented test instances

oCase #1: autonomous vehicle in a rare traffic situation
❖Vehicle may have an accident with unfamiliar objects

oCase #2: face recognition with gender and race biases
❖Photo cannot be recognized for very rare types of faces

oOur idea: explicitly minimize val/train distribution shift ℛ𝑜𝑝𝑡 = argmin𝐷𝐾𝐿 𝑄𝒙
v ∥ 𝑄𝒙

Problem Statement for Biased Datasets

classifier



oMain approach: density matching in feature space using Fisher kernel

o Initially, we pretrain classifier using unsupervised learning [1]

oNext, our algorithm repeats the following steps:

1) Pool compact features 𝒛 and gradients 𝒈 for val/unlabeled data

2) Estimate practical Fisher kernel (PFK) between validation and unlabeled data

3) Annotate and add selected examples to train data that maximize PFK

Our AL Method via Self-Supervised Fisher Kernel

References:
[1] Gidaris et al. Unsupervised representation learning by predicting image rotations. In ICLR18

https://arxiv.org/abs/1803.07728


oWe pool multi-scale features 𝒛𝑖 ∈ ℝ𝐿 and gradients 𝒈𝑖 ∈ ℝ𝐿 from the task DNN

oPseudo-labels for gradients are estimated using 𝑆 = Ƹ𝑝 𝒚|𝒛 metric

oPractical Fisher kernel is a tractable similarity matrix for DNNs:

𝑹𝒛,𝒈 = 𝑹𝒛 ∘ 𝑹𝒈 =

𝑗

𝒁v
𝑗

𝑇
𝒁𝑗 ∘ 𝑮v

𝑗
𝑇
𝑮𝑗

o Examples similar to clustered misclassified validation data are added to train dataset

Details of Self-Supervised Fisher Kernel



oComparison in terms of forward and backward DNN passes
➢𝑀 – size of validation dataset

➢𝑁 – size of all unlabeled train data

➢𝑁𝑏 – current labeled train data size

➢ ሖ𝑁𝑏 – current unlabeled data size

➢𝐾 – number of stochastic samples

➢ 𝐼 – number of train epochs

➢ 𝐸 – number of ensembles

oOur AL speedup compared to [2,3]  
𝐸𝐾 ሖ𝑁𝑏

2(𝑀+ ሖ𝑁𝑏)
≈

𝐸𝐾

2
, since ሖ𝑁𝑏 ≫ 𝑀

o Typically, complexity of our method is at least 10× lower

References:
[2] Gal et al. Deep Bayesian active learning with image data. In ICML17
[3] Beluch et al. The power of ensembles for active learning in image classification. In CVPR18
[4] Sinha et al. Variational adversarial active learning. In ICCV19

Complexity Estimates

https://arxiv.org/abs/1703.02910
http://openaccess.thecvf.com/content_cvpr_2018/html/Beluch_The_Power_of_CVPR_2018_paper.html
https://arxiv.org/abs/1703.02910


o ResNet-18 model

o Practically unrealistic data setup 

o Our AL method with pseudo-labels:

o1.5% accuracy ↑

o20% labels ↓

o16× speedup ↑

o Theoretical limit with true labels:

o 7% accuracy ↑

o 70% labels ↓

ImageNet w/o Class Imbalance



o ResNet-18 model

o Practical data setup case

o Imbalance = {500 random 
classes}/{500 other classes} images

o Our AL method with pseudo-labels:

o2% accuracy ↑

o42% labels ↓

o16× speedup ↑

o Theoretical limit with true labels:

o 6% accuracy ↑

o 90% labels ↓

ImageNet with 100× Class Imbalance



o ResNet-10 DNN model

o Imbalance = {0…4}/{5…9} images

o Our AL method with pseudo-labels:

o 10% accuracy ↑

o 40% labels ↓

o 32× speedup ↑

o Theoretical limit with true labels:

o 17% accuracy ↑

o 80% labels ↓

SVHN with 100× Imbalance



Imbalance = {0…4}/{5…9} images = 100× at AL iteration 𝑏 = 3

a) Prior varR (uncertainty-based) method: 36% accuracy for digits {5,8,9}

b) Our method with estimated pseudolabels: 75% accuracy for digits {5,8,9}

c) Our method with all true labels: 89% theoretical limit for PFK

Confusion Matrices for 100× Imbalanced MNIST



Imbalance = {0…4}/{5…9} images = 100× at AL iteration 𝑏 = 3

Balls are misclassified and dots are correctly classified

a) Prior varR [2] method: 36% accuracy for digits {5,8,9}

b) Our method with estimated pseudolabels: 75% accuracy for digits {5,8,9}

c) Our method with all true labels: 89% theoretical limit for PFK

T-SNE Clustering: MNIST 100× Imbalance
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oAfter AL-assisted labeling, efficiency of labeled data can be improved

oData pre-processing can virtually increase train dataset and improve generalization

Labeled Data Optimization

o Labeled data optimization steps:

✓Select pre-processing functions (e.g. augmentations) to increase data variability

✓Set processing hyperparameters or learn them automatically (AutoAugment/AutoDO)

✓Train AI model with the virtually expanded train dataset to improve generalization

✓Continue optimizing data processing functions and their hyperparameters 



o Typical data pre-processing functions: augmentations, noise, mixup, CutMix [1]

oManual selection is time-consuming and requires domain knowledge

oRecent methods aim to search or learn pre-processing automatically: AutoAugment [2]

o Learnable pre-processing can be achieved using automatic hyperparameter optimization

Labeled Data Optimization

References:
[1] Yun et al. CutMix: Regularization Strategy to Train Strong Classifiers. In ICCV19
[2] Lim et al. Fast AutoAugment In NeurIPS19

https://arxiv.org/pdf/1905.04899.pdf
https://proceedings.neurips.cc/paper/2019/file/6add07cf50424b14fdf649da87843d01-Paper.pdf


oOther hyperparameters can be automatically optimized as well →

oAutoDO model [1] includes augmentations, loss weights and soft-labels

oMain idea: learn hyperparameters for each train data point

oHence, AutoDO model contains millions of hyperparameters!

o Implicit differentiation [2] provides scalable optimization framework

oModel and dataset optimization are alternating during training

References:
[1] Gudovskiy et al. AutoDO: robust AutoAugment for biased data with label noise. To appear in CVPR21
[2] Lorraine et al. Optimizing millions of hyperparameters by implicit differentiation. In AISTATS20
via Scalable Probabilistic Implicit Differentiation

Automatic Dataset Optimization (AutoDO)

https://arxiv.org/abs/2103.05863
https://arxiv.org/abs/1911.02590v1


oMain focus: optimization of realistic train datasets with data biases and noisy labels

o Train data distribution should be adjusted to test data in actual systems

oAutoDO can flexibly change train distribution due to per-point model

o This prevents overfitting to train data and increases generalization!

Automatic Dataset Optimization (AutoDO)

References:
[6] Cubuk et al. RandAugment. In CVPRW19
[17] Lim et al. Fast AutoAugment. In NeurIPS19
[16] Li et al. DADA. In ECCV20

https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1905.00397
https://arxiv.org/abs/2003.03780


Automatic Dataset Optimization (AutoDO)

o WideResNet28-10 model

o SVHN dataset

• 100× class imbalance

• 10% noisy labels 

o Confusion matrices (top)

o T-SNE of embeddings (bottom)

a) Standard augmentations

b) Fast AutoAugment

c) AutoDO

oAutoDO improves generalization 
when train dataset is biased, 
and labels are noisy 



o I presented recent Panasonic AI-related projects:

✓ Autonomous ride share service (big thanks to BDD)

✓ Our new challenging multimodal Home Action Genome Dataset

✓ Recent research about robust active learning and AutoAgument

o I encourage research community to:

✓ Consider a realistic imperfect data collection and labeling process

✓ Introduce some data bias when develop your models

✓ Research new methods to overcome limitations of empirical datasets

o Main takeaways:

✓Methods to deal with the imperfect data not only save corp money…

✓ They are good for publications1 and discovering all unknown yet dragons!

Conclusions 

1CVPR2021: L2ID and TCV workshops. ICLR2021: S2D workshop

https://l2id.github.io/
https://fadetrcv.github.io/2021/
https://s2d-olad.github.io/


Questions?

Panasonic AI


